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INTRODUCTION 

The analysis of the laminar flow of an incompressible Newtonian liquid jet issuing from a 
circular nozzle into an inviscid gas phase has received considerable attention in recent years. 
Harmon (1955), Slat&y & Schowaltcr (1964) and Joseph (1974) utilized various forms of the 
macroscopic momentum balance to derive expressions for the final diameter of a horizontal 
capillary jet. Duda & Vrcntas (1967) obtained finitediikrence solutions for both vertical and 
horizontal jets at the high Reynolds number limit where the boundary layer assumptions arc 

valid and the gmmning di&cntiaI equations are parabolic. Surface tension efkcts were 
inckded in this analysis. These investigators aIso obtained an analytical solution of’0 linearM 
form of theequations of motion. Horsfall(1973), Nickcll ct cl. (1974). Rcddy 8. Tanuer (1978) 
and Omodei (1980) obtained numerical solutions of the elliptic partial dif?erential equations 
describing jet lIow for a wide Reynolds number range with and without surface tension. 
Middleman & Gavis (l%l), Goren d Wronski (1966), Gavis & Modan (1%7) and Bilqen (1971) 
experimentally studied the shape of Newtonian liquid jets issuing from a capillary into air. 
Fiiy, techuiques used in the analysis of liquid-gas jets have recently been applied in 
theoretical studies of liiuid-liquid iaminar jets cyu de Sch@e 1975, Gospodinov et ol. 1979). 
ThepvPposeofthisbriefcommunicationistoutilizetherermltsoftbcrbovestudier~~on 
somearpectoof~aads~~tensioneftectsiaahorizontrrlN~liqPidjetdo~~ 
a continuous gas phase. 

THEORETICAL CONSIDERATIONS 

It can be easily shown that the radius, B, of a horizontal jet of an incomprcssrWe Newtonian 
liquid is represented by an equation of the following functional form 

$= FI ($ We, Re) 

wbmRoisthenozzleradiusendzistheaxialdistanccfromtbenozzk.TheReynoklsanaabet, 
Re, aud the W&r number, We, are defined as follows 

where p, ctt and u arc the density, viscosity, and surface tension of the liquid and U, is the 
average velocity in the jet nozzk. Below, we examine just how strongly the surface tension 
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influences the jet shape as the Reynolds number is varied from the creeping flow asymptote to 
the boundary layer limit. 

For sufficiently high Reynolds numbers (but where the flow is still laminar), the equations of 
motion assume their boundary layer form. Both the radial pressure gradient and axial diffusion 
of vorticity are negligible, and the jet shape is described by an equation of the following form: 

R0 F., , We . [4] 

In addition, the macroscopic momentum balance yields the following expression for the final 
diameter of a horizontal jet at the high Reynolds number limit (Slattery & Schowalter 1964, 
Duda & Vrentas 1967) 

, 4a,. O= 2~-(a3-a')+-~ -1 
We 

[5] 

where 

R(z = ~) [6] 
O~ = Ro 

In the limit of negligible surface tension (We-,oo), we recover the well known result, a = 
X/3/2, from [5]. We now examine how rapidly the boundary layer flow is approached as the 

Reynolds number is increased above the creeping flow limit. 

DISCUSSION 

The numerical results of Omodei (1980) for the dependence of jet radius on jet length in the 
absence of surface tension are presented in figure 1 for three Reynolds numbers. It is evident 
from this figure that a Reynolds number greater than 1000 must be reached before the boundary 
layer limit is effectively achieved. The boundary layer result shown in figure I is of the form of [4] 
and is based on the theoretical analysis of Duda & Vrentas (1967). Experimental data for the final 
jet radius from three independent studies are presented as a function of Reynolds number in figure 
2. The curves in this figure are average representations of the data points of each of the three 
investigations. The data of Biigen (1971) were taken under conditions where interfacial effects are 
important. A possible explanation for the reduction in the jet contraction which was observed by 
Bilgen and which is evident from figure 2 is given below. Although the data of Middleman & Gavis 
(1961) and of Gavis & Modan (1967) are relatively free of surface tension effects, the agreement 
between the data is not particularly good. The scatter in the data of Middleman & Gavis is 
significantly greater than that in the data of Gavis & Modan. If we thus assume that the latter data 
set is more reliable, then the experimental data appear to support the previously stated conclusion: 
A Reynolds number greater than I000 is needed to reach the boundary layer asymptote. 

The jet flow can be regarded as a stick-slip flow field (Trogdon & Joseph 1981). The flow 
field changes from a fully developed flow in a pipe with a no slip condition on the wall to a 
uniform flow field far downstream with a no drag condition. Hence, the fluid flows from a high 
vorticity region into one where the vorticity is very low. 

The conclusion that the boundary layer limit is reached only at relatively high Reynolds 
numbers for the stick-slip jet flow is dramatically different from the result for a slip-stick flow. 
In the latter flow field, fluid flows from an impermeable, frictionless tube of infinite extent 
(where the velocity profile is initially uniform) into an infinite pipe with a no slip condition on 
the wall. For this case, the flow of fluid is from a low vorticity region to a high vorticity region 
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Fqgure !. Dependence of jet radius on jet Icnllth ia the absence of surface tension. Curves are based on 
numer/cal solutions of Omodei (1980) and boundary layer theory o| Dude & Vrentas (1967). 
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since vorticity is continuously being lenerated at the solid surface of the tube. This slip-stick 
flow represents an early model of laminar entrance flow into a pipe which was studied by 
Vrentas et al. (1966) and by Vrentas & Duda (1967). The dimensionless axial velocity at the tube 
center line for the slip-stick flow is plotted versus axial position in fqlure 3. For this flow field, 
we see that the boundary layer asymptote is achieved in the vicinity of Re = 150. 
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Figure 3. Dimensionless axial velocity at center line of tube versus axial position from tube entrance for 
slip-stick flow. 

The difference between the stick-slip jet exit flow and the slip-stick entrance flow model can 
be explained by considering the relative strengths of the axial diffusion and the axial conv~ction 
of vorticity. Axial diffusion of vorticity is dominant in the creeping flow limit where the 
Reynolds number is low and the convective transport of vorticity is weak. As the Reynolds 
number is increased, the convective motion begins to overwhelm the diffusive transfer. 
Ultimately, the effect of axial diffusion of vorticity becomes negligible and the boundary layer 
limit is reached. For the jet flow, convective flow of high vorticity fluid near the tube wall is not 
particularly effective because of the low velocities in that region. In contrast, for the entrance 
flow model where the velocity profile is initially uniform, there exists a strong convective flow 
of low vorticity fluid everywhere in the frictionless stream tube. Consequently, it is reasonable 
to expect that significantly higher Reynolds numbers are needed for the jet flow to wash out the 
effect of the axial diffusion of vorticity due to the existence of relatively weak convective flows 

for this configuration. 
The effect of surface tension on the final jet radius is presented in figure 4 for various 

Reynolds numbers. In this figure, the value of c~ in the absence of surface tension, a (We = ~:), 
is compared to the value of a when surface tension is operative, a (We). The boundary layer 
curve was computed from [5], and the curves for intermediate Reynolds numbers were 
derived from the results of Omodei (1980). For the creeping flow limit (Re = 0), it can be shown 
that there is no surface tension effect for We > 0. It is evident from this figure that, for most of 
the Reynolds number range, the effect of surface tension can be significant for sufficiently low 
We. At a particular value of We, the most significant effects occur at high Reynolds numbers 
and at a Reynolds number relatively close to the creeping flow asymptote. This is shown in 
figure 5 where, for We = 4, the greatest effects of surface tension are at the boundary layer limit 
and at a Reynolds number between 0 and 5. Dashed lines in figure 5 denote possible 

interpolations. 
As noted above, surface tension can exert a very significant influence on jet shape for both 

high and low Reynolds numbers if the Weber number is sufficiently low (say, less than 10). Low 
velocities lead to low values of both Re and We. It there'fore follows, as noted previously by 
Joseph (19"/4), that surface tension has a large effect on low speed, and hence low Reynolds 
number, jets. However, it is not likely that this large effect will be observed in creeping flow 
jets in the laboratory since it may be difficult to approach this limit by lowering the jet velocity. 
A liquid jet is almost certainly unstable at low speeds, and the low Reynolds number region is 
usually approached experimentally by using fluids of higher viscosity (Middleman & Gavis 
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Figure 4. E~ect of surface tension on final jet radius for various values of Re. Boundary layer ctu've was 
computed from [5| and results for intermediate Reynolds numbers are from Omodei (19S0). 
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Figure 5. Effect of sudace tension on final jet radius for We = 4 and various values of Re. Dashed lines 
indicate voss~le interpolations. 

1961, Goren & Wronski 1966, Gavis & Modan I%7). Consequently, in practice, the Weber 
number for a low Reynolds number jet is not necessarily particularly small, and the influence 
of surface tension on that jet shape could very well be neglilp'ble in the creepin8 flow region. We 
note that, in all three studies cited above, most of the data were taken with We > I0 even 
though Reynolds numbers less than five were achieved. 

Finally, we remark that it is possible to experimentally observe sign/tic.ant surface tension 
effects at moderately high Reynolds numbers. This is contrary to the stalement made by 
Omodei (1980) that the effect of surface tension is negl~ible for Re > 65 for experimentally 



564 J.S. VRENTAS and C. M. VRENTAS 

realizable jets. Biigen (1971) presented data for a jet with Re ~ 200 and We ~ 2. We see from 
figure 4 that a very significant influence of surface tension on the final diameter is predicted for 
this case. Since surface tension produces thicker jets for Re > I l, it is reasonable to conclude 
that at least part of the reason that the jets observed by Bilgen were larger than those observed 
by Gavis & Modan (1967) is the presence of surface tension effects. We thus conclude that 
significant surface tension effects on the jet shape are not necessarily limited to low Reynolds 
numbers. This conclusion does not question the validity of the numerical results of Omodei but 
rather his conclusion that significant surface tension effects cannot be observed in the 
laboratory at high Reynolds numbers. 
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